電気の資格のアレコレ
第二種電気工事士筆記試験を攻略せよ〜知識ゼロから学ぶ「基礎理論 2 導体と絶縁体」

第二種電気工事士の学科試験の科目の一つ「基礎理論」。前回に続き、この回では導体と絶縁体についてゼロから解説します。
導体および絶縁体
電気量と抵抗
◎導体 導体は電気を通しやすい物体で、絶縁体は電気を通しにくい物体を指します。
電気の通しやすさは抵抗が深く関わっており、抵抗値が大きいと電気を通しにくく、逆に小さいと電気を通しやすくなります。電気を通す電線には抵抗値が含まれますが、抵抗値は電線の長さに比例しています。つまり、電線が長ければ長いほど抵抗値は大きくなるということです。電線が太いと抵抗値は小さくなり、逆に細いと抵抗値は大きくなります。

抵抗率
電線の太さを求める時に重要な「断面積」は、直径から求めることができます。断面積が2倍になると抵抗値は反比例して0.5倍になり、断面積が0.5倍になると、抵抗値は2倍になります。直径が2倍の場合、断面積は半径×半径×円周率で求めるため、1/2×1/2=1/4、つまり抵抗値は0.25倍になます。逆に0.5倍になると2×2=4倍になります。これらの関係性は一通り押さえておきましょう。抵抗は抵抗率として式で求めることができます。
断面積の場合の公式:「R=ρ×L÷S」
ρは抵抗率、Lは電線の長さ、Sは断面積を表します。
直径の場合の公式:「R=4ρL÷πD²」
Dは直径を表します。
ρは抵抗率、Lは電線の長さ、Sは断面積を表します。
直径の場合の公式:「R=4ρL÷πD²」
Dは直径を表します。
この2つの式を暗記しておけば、抵抗率の問題はそれぞれ値を代入するだけで求めることができます。式自体が答えになる問題も出題されるケースがありますので、しっかり覚えておきましょう。
注意点:断面積は「m²」で直径は「m」として解説しましたが、電気工事士の問題ではこれを「mm」に変換しなくてはならない場合があります。その時に単位を10⁻⁶する事を忘れないようにしましょう(半径が10⁻³なので10⁻³×10⁻³=10⁻⁶となります)。